
Efficient Resource Allocation and Tracking in
Structured P2P network: Back Trackable Finger
Table based CHORD (BTFT-CHORD) Protocol

D.srivihari, P.Prasanna Murali Krishna

Dept of ECE, SGIT, Markapur , AP,India

Abstract: Recently, P2P (Peer-to-Peer) technology has witnessed
a rapid development. Basically, one of key components in
successful P2P applications is how to efficiently look up
resources. Considering that structured P2P is a relatively
efficient way to locate resources, this paper conducted two
improvements to increase the search efficiency in Chord-based
algorithms, one of the most popular structured P2P resource
lookup protocols. In detail, our contributions are twofold. First,
considering the fact that routing information in Chord is not
abundant enough for efficient resource search, and looking up
resource can only be enforced in clockwise direction, a new
algorithm called BTFT-CHORD is proposed to reconstruct the
finger tables in Chord, in which counter-clockwise finger table is
added to achieve resource queries in both directions, and the
density of neighboring fingers is increased. Additionally, BTFT-
CHORD implements a new operation to remove the redundant
fingers introduced by adding fingers in BTFT-CHORD.
Experimental results show that BTFT-CHORD’s query
efficiency has been improved in terms of the average lookup
hops and average lookup delay. The proposed BTFT-CHORD
algorithm enlarged the finger table which may cause the
forwarding-storm of routing maintenance messages.

INTRODUCTION
Sometimes in peer to peer networks each node acts as a
server along with a client. It means it may behave both as a
source and a receiver. In recent usage, peer-to-peer has come
to spell out applications in which consumers can make use of
the Internet to exchange files with each other directly or via
an intermediate server. In version, however, there is
absolutely no centralized server, but rather an interconnected
community of peers. Each node can request information or
files from any other node at any other level in time. The
concept of P2P networks is that there is no centralized server
here, all the info as well as the information is stored in a
distributed fashion on all nodes.
In ordered peer-to-peer networks, connections in the overlay
are fixed. They typically use distributed hash table based
(DHT) indexing, like in the Chord system (MIT).
Unstructured peer-to-peer networks don't provide any
algorithm for organization or optimization of network
connections.
There are three versions of unstructured P2P which have been
defined as of now. In the very first kind of unstructured P2P
community, I.e. pure peer-to-peer systems the entire network
contains just peers with equal potential. As there aren't any

special or high-priority nodes of any special infrastructure
function, hence there is just one routing level. Hybrid peer-to-
peer systems permit such infrastructure nodes to exist; it
means they allow unique nodes with high priority that are
known as superb nodes. The third type of unstructured P2P
systems are central peer - to - peer systems, where there is a
central server can be used for indexing capabilities and also
to weight and build the whole method of unstructured nodes.
The very first prominent and popular peer - to - peer file-
sharing method, Napster, was really an instance of the design.
Freenet and Gnutella, in the flip side, are samples of the
model. Kazaa is an instance of the cross model.
We'll mostly handle ordered P2P systems. Organized P2P
network apply a globally consistent process to ensure that any
node can search and route every other node that includes the
needed file, even though the file is found at some distant
point within the system. Such a guarantee requires a far more
organized pattern of links containing path details. Distributed
hash table (DHT) is a structured P2P system, when a version
of consistent hashing is used to assign storage details of every
file.
Distributed Hash Tables
Distributed hash tables are distributed systems that provide
lookup into a hash table. Every hash table is composed of
(key, value) set and any node can effortlessly obtain the value
associated with a vital. Responsibility for maintaining the
maps from keys to values is spread among the nodes, in such
a manner that a change in the set of individuals causes a
minor amount of disruption. DHTs could be used to construct
huge sites as they're distributed evenly across all nodes. This
at a way increases the amount of nodes which can be in a
system.

LITERATURE STUDY
Chord protocol [1]
A major problem with peer to peer programs is the fact that
they're not able to effortlessly find the nodes including a
specific information item. To fix this chord protocol was
developed which is really a distributed lookup protocol. Its
primary purpose would be to chart a specified key onto a
node. Note is actually a scalable process.
Chord offers fast distributed computation of a hash function
maps keys to nodes associated with them. Chord utilizes
consistent hashing to supply keys to nodes. Whenever a fresh

D.srivihari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 853-857

www.ijcsit.com 853

node enters the setup the tips are evenly distributed to each of
of the nodes thus keeping a nicely distributed load. Because a
chord node stores info about a few of the other nodes located
close to it, Therefore chord method is scalable. All of this
information is saved in a dispersed manner, so each node
receives the hash value from other nodes.
Presently the primary concern is that how can we
distinctively recognize every node. This hashing is achieved
utilizing a hash function. As described before the principal
use of a hash function would be to produce an m-bit
identifier. This procedure is recognized as consistent hashing.
Consistent hashing achieves the function of assigning keys to
the nodes in the subsequent manner. All the identifiers are set

in an identifier circle modulo 2m . Now the keys are allocate
to the nodes. This is done by evaluating the identifier of a key
with the identifier of a node. The key gets assigned to a
exacting node whose identifier’s value is additional than that
of the key. The selected node will be termed the descendant
of the assigned key. It is also signify as successor(k), which
means descendant of key k. Assume that identifiers are

symbolized in a circle of numbers initial from 0 to 2 1m − ,
then successor(k) will be the first node when we traverse in a
clockwise direction from k.

Figure1. An identifier circle (ring) consisting of 10 nodes
storing five keys [1]

“Figure 1 shows a Chord ring with m = 6. The Chord ring has
10 nodes and supplies five keys. The successor of identifier
10 is node 14, so key 10 would be positioned at node14.
Similarly, keys 24 and 30 would be positioned at node 32,
key 38 at node 38, and key 54 at node 56” [1].
Chord lookup algorithm [1]
Typically in note protocol lookup is performed when each
node tries to ask its successor about the key. Therefore it
needs to continue bridging the chord ring one node after the
other to look for the crucial. Today it is just a time-taking
procedure. So there's a strategy to create the chord method
scalable. Chord protocol maintains a finger table to look for
the key in a more time efficient way Let us suppose that the
number of bits in the identifier be m. A routing table is
preserve by every node which contains an utmost of m
entries. This table maintained by each node is called the
finger table. The finger table enclose a number of entries,

where the ith entry contains a mapping to the node’s first
descendant f which succeeds the node let us say n by at least

2 1i − on the identifier circle, i.e., 1f = successor(n+2)i−

. We call node f the ith manipulate of node n. It is indicate as
n.finger[i] . The finger table can be implicit more clearly

from the figure shown below. Basically it has two entries, one
for the identifier and the other for the IP Address of a
meticulous node.

Figure2. Finger table entries for each node in chord ring [1]

The Figure 2 shows the finger table for node N8. The first
finger of node 8 points to its descendant which is node 14,
because node 14 is the first descendant which succeeds

0 6(8 2) mod 2 9+ = . Similarly, the last finger of node 8

points to node 42, as node 42 is the first node which is the

successor of 5 6(8 2) mod 2 40+ = ” [1]. It is apparent from

the figure that the first finger for every node is its first
successor.

More approaching can be gained on the finger tables
from the table given below. It gives a obvious idea of the
definition of fingers and the respective successors and
predecessors for each node.

 Finger Table definition [1]

The working of note protocol is quite straightforward. It
demands another node to uncover a successor for it,
whenever afresh node enters within the device. Whenever a
brand new successor is located for it, it is subsequently given
to it like its successor. Currently the successor also
understands the cutting-edge node is its predecessor.
Nevertheless, the preceding predecessor of the new node's
heir doesn't know whether a different node as been put into
the method. Because of this each node is immediately
refreshed after a certain amount of time. During this node
each node asks its forerunner and successor about any
adjustments to know whether or not a new node has been
added or removed from the existing system. That is the
location where it comes to know that the setup has changed.
Therefore the preceding predecessor of the recent node's

finger[k] first node on circle that succeeds (n +
successor the next node on the identifier circle;
predecessor the previous node on the identifier circle

D.srivihari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 853-857

www.ijcsit.com 854

successor is aware of its successor's new predecessor. Then it
stores the nod as its heir. The new node that has been
unaware of its own predecessor now realizes that it has as its
predecessor this node. This is the way the device is managed.
Every time a node fails or randomly leaves the device the
keys stored on this node are evenly distributed to other nodes.
But to preserve the sequence each node keeps independent
table where it stores the records of next n nodes succeeding it
or previous it. It keeps on sending messages in a consecutive
order to every other node within the desk till it receives a
reply from the node. The node which sends a reply to it first
in order to what is stored within the entries is saved as its new
heir and that node stores it as its heir.
Limitations in chord protocol
Because the existing method keeps a hand table when the
search is done in a sequential manner within the clock wise
direction there's an issue with all the time obtained to search a
node. Consider a case where a trick to be researched is found
on the node that is at the end of the ring when scanned in a
clockwise path. This research would take plenty of time, thus
cutting down the efficiency of the chord process. So it
becomes quite important to minimize the sum of time
required to research for a node in a less amount of time. That
is a key feature which should be taken into consideration
because the most important purpose of any protocol could be
the quick and effective lookup of nodes containing keys.

OBJECTIVES
 The undertaking is aimed at handling a number of the
disadvantages within the first CHORD algorithm.
Specifically the way it searches for a particular key within the
NOTE ring. It only queries it in clock-wise direction. This
single direction search not only raises time for finding the
special key, but more routing communications must be
passed in theP2P network. Seeking in both direction may
decrease the time required to locate an unique important
within the band. That is indeed more efficient if the key lies
within the searching nodes predecessor. Within the regular
formula the entire CHORD ring will be traversed, but in
bidirectional look-up this will be faster and will require lesser
hops.

DESIGN
This task tries to beat a number of the limitations with
CHORD protocol mentioned in previous sections. The
undertaking implements a bi-directional finger table, which
would lessen the look-up time for a particular a node. In
original NOTE all the messages are passed in a clockwise
way over the ring , that is wasteful. As an example to lookup
a central located near but previous the node, the lookup
communications will have to navigate almost the whole
CHORD ring.
At the core of the project is to implement the zero finger table
for each node in addition to this already present finger table.
Merely stated the finger table stores the successors and their
mapped keys for a specific node, the anti finger table will

have the list of predecessor nodes of that particular node. As
finger table links to nodes in clockwise direction, the zero
finger table will hyperlink the nodes in direction. Like
whenever there is a link in hand table of initial NOTE form
node A to node W, we add a reverse hyperlink from node W
to node A. These change links which are in anticlockwise
direction form a reverse hand table for this node. Having
stated this there should be no change in how the data objects
are saved. All of the data objects continue to be found at the
successor of these keys.
So each node in modified CHORD protocol maintains:

• Finger Table
• Successor List
• Anti finger Table

While the previous two are the same as they were in the
original CHORD protocol.

Lookup Algorithm
Once we need to maintain the key and data mappings intact
the research algorithm requires to be changed. The manner
first NOTE functions is that it really searches for a particular
key's successor. But when using the anti-finger stand, we
store the node's forerunners so we are unable to use the same
formula to really get the keys. Whenever we're using anti
hand table, the keys won't be in the keys heir but its
precursor. This is relevant to maintain the keydata mappings
of the first method.
Using antifinger in a few instances we won't be asked to have
the whole research routing procedure. We are able to check
the anti finger table to research if all of us have a node in it
whose value is greater than essential. Then we could use that
node to retrieve the data connected with that key.
We can go through the ordinary research procedure as we did
inside the original CHORD algorithm, if an unique key
wasn't found because nodes anti finger table entry. But as we
will likewise be looking in the anti-clockwise direction as we
do in clock-wise direction, we shall get the important earlier
than earlier algorithm as we're searching it in both the ways.

Figure Anti Finger Table

D.srivihari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 853-857

www.ijcsit.com 855

IMPLEMENTATION
Both principal execution metrics we discuss here is the first
clockwise Chord regimen based on Open Chord, and the
adjustment of software to match the characteristic of bi-
directional routine. Moreover, we add some attributes for
each application to weight the functionality of each formula.
The Open Chord platform can be an open source platform for
Chord formula simulation. We use My Eclipse 8.0 to build up
the, the source code can be gathered to some.bat document,
we could found the command-line to determine the effects of
adjustment produced within the source code.
Since the basic edifice of the finger table remains the same as
unique Chord, we do not need to adjust the declaration of
finger table classification. The number of entries in the finger
table is m at most, and the dimension of finger table is

(log)O N , where N is the total number of nodes in the

network.
Also, each nodes preserve an anti-finger table, which has m
entries stored at the majority, the size of anti-finger table is

(log)O N . In the BiChord lookup formula, when a node

send an internet search message to look up the desired key, if
there is no items within the hand table and antifinger table
that's closer than it self, the node is hence the predecessor or
heir of the important. Otherwise, criteria will assess the
routing table (fingers and anti-fingers), then the lookup
message will be sent to the next hop node that is closer than
the current node. The lookup operation is iteratively executed
until it discovers the node that's previous or succeeding the
wanted key.
Because the size of simulator is little (normally less than
50nodes), and also the simulator is centered on Java Virtual
Machine (JVM), the research speed during the Chord circle is
comparatively large. If all of us decide on a timer to consider
the functionality of lookup operation in every criteria, the
greatest accuracy we can achieve is nanosecond.
Nevertheless, after several attempts, we locate the timer isn't
the best way to compute the price since it's incorrect.
Therefore we facilitate the jump counter here to compute the
steps of searching for. Because the hops will never be
impacted by the hardware settings, the counter can explicitly
reveals the effectiveness of the formula within this situation.
The pseudo code for the bi-directional lookup algorithm can
be as following:

Node findPredecessor(key,n){
Node pred=n.getPredecessor();
if (pred==null)

return n; //n is the current node
else if (key.isInInterval(pred.ID, n.ID) //check if the
key is between the pred and current node

return n;
else {Node

n'=getClosestPrecedingNode(key) //if not,
track the closest preceding node and lookup again

return findPredecessor(key,n') // recursively
find the predecessor of node n'

}

}
Node findSuccessor(key,n){

Node succ=n.getSuccessor();
if (succ==null)
 return n; //n is the current node

else if (key.isInInterval(n.ID, succ.ID) //check if the
key is between the current node and successor's node

return n;
else {
Node n'=getClosestPrecedingNode(key) //if not,

track the closest preceding node and lookup again
return findSuccessor(key,n') // recursively find

the predecessor of node n'
}
}
Set<Serializable> retrieve_R(key){

hops_R=0; //initialized the hops counter in anti-
finger table direction

whild(!retrieved){
Node responsible Node_R=null;
responsible Node_R = findPredecessor(id);
hops_R+=1; //while not retrieve the desired

key,
add the hop counter by 1

try{
result_R = responsibleNode_R.retrieveEntries(id);

// get the responsibleNode to fetch the entry
retrieved = true; //if successfully get the

value,
set retrieved state to true

}catch(Exception e){}
continue;
}

}
if(result_R !=null)
values1.add(entry.getValue());

//add the lookup result to the valueset
final_hopsR=hops_R; //get the hop counter for the

current lookup operation
return values1;

}
Set<Serializable> retrieve(key){

hops=0; //initialized the hops counter in
finger table

direction
whild(!retrieved){
Node responsibleNode=null;
responsibleNode =

findSuccessor(id);
hops+=1; //while not retrieve the

desired key, add
the hop counter by 1

try{
 result = responsibleNode.retrieveEntries(id);
//get the responsibleNode to fetch the entry

D.srivihari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 853-857

www.ijcsit.com 856

retrieved = true; //if successfully get the
value,
set retrieved state to true

}catch(Exception e){}
continue;
}

}
if(result !=null) values.add(entry.getValue());

// add the lookup result to the valueset
final_hops=hops; //get the hop counter for the

current lookup operation
return values;

}

It really can be observed within the pseudo code that within
our changed version of Chord, we place a jump counter for
research procedure in inverse and clockwise direction -
clockwise direction. When crucial recover operation is
executed, a hop value will be returned by system for both
seeking routine.

EVALUATION
 In this section, we evaluate the performance of Bi-
Directional Chord with OpenChord simulator. The algorithms
used in this test are the modified Bi-Directional Chord
algorithm and also original OpenChord Chord criteria. The
Note algorithm can be used for comparison.
Experimental Test Results :
Routine Table Size
 Amount of entries in antifinger table and hand table will help
estimate the total size of routine table.
Within the test, we simulated a community in OpenChord
with [1,2,4,8,16,32,48] nodes respectively. In each dimension
of community, we report the amount of nodes, a fair number
of entries in hand table, a fair variety of records of antifinger
table, the lookup hops in every single direction as well as the
total variety of entries in regimen table.
Not surprisingly, the number of items in table is lessor equal
to 2m, where m is the amount of nodes in the community. As
well as the size of the table is about the total items number of
whole community.
Look Up Hops
 We pick up a same hunting key (a1) to search in an identical
node (node0) to execute the look up procedure in Chord and
BiChord formula, to consider the performance of program
table look up. We document the trips counter for each size of
system tested. The less trips means the algorithm retrieves the
node with type in shorter measures.
Their evaluation explanation as well as the check data stand
is given as follows:
Firstly we have attempted to calculate the value of number of
hops in the present note protocol, Therefore the stand for that
is given in Table 2

Table 2. Evaluation table for chord protocol

Now for the new bidirectional finger table evaluation is based
on the table given below

Table 3. Evaluation of bidirectional finger table

As it is obvious from both tables that the recent protocol that
is applied using the bi-directional finger table requires a
lesser variety of hops, when we look in the number of nodes
worth = 32. But it's impossible to virtually assess this using a
less amount of nodes. To obtain the best outcomes we must
examine this within an environment where the number of
nodes are comparable to a sensible network.

CONCLUSION
 This statement proposes bi-directional research algorithm
predicated on the OpenChord simulation platform.
Throughout designing the formula we assemble an anti finger
table. In the experiment we understand that the lookup
performance is slightly enhanced. In addition, we offered
some investigation to reveal the advancement of the research
efficiency. In the future function we need to enhance the
formula to implement the use of automatically picking the
search direction by maintaining a check in the lookup hops.

REFERENCES
[1] Chord: A Scalable Peer-to-peer Lookup Protocol for Internet

Applications Ion Stoicay, Robert Morrisz, David LibenNowellz,David
R. Kargerz, M. Frans Kaashoekz, FrankDabekz

[2] Using bidirectional links to improve peer-to-peer lookup performance
JIANG Jun-jie†1, TANG Fei-long1,PAN Feng1, WANG Wei-nong2
(1Department of Computer Science and Engineering, Shanghai Jiao
Tong University, Shanghai 200030, China)

[3] Wikipedia : http://en.wikipedia.org
[4] http://compnetworking.about.com/od/p2ppeertopeer/.../p2pintroduction

Number of Finger table Finger table size Hops
1 0 0 1
4 2 8 1
8 3 24 1
16 4 64 1
32 5 160 2
48 6 288 2

Numbe Finge Finge Revers Revers Hop Hops(R Total
1 0 0 0 0 1 1 0
4 1 4 2 8 1 1 3
8 2 16 3 24 1 1 5

16 4 64 3 48 1 1 7
32 5 160 5 160 2 1 10
48 6 288 5 240 2 2 11

D.srivihari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 853-857

www.ijcsit.com 857

